domingo, 26 de marzo de 2017

Física del sonido

ONDAS SONORAS

El sonido consiste en la propagación de una perturbación en un medio (en general el aire).
¿Cómo es la energía sonora? ¿Cómo se propaga la energía de un lugar a otro?
Para comprender mejor esto imaginemos un tubo muy largo lleno de aire. El aire está formado por una cantidad muy grande de pequeñas partículas o moléculas. Inicialmente, el aire dentro del tubo está en reposo (o más técnicamente, en equilibrio). Este equilibrio es dinámico ya que las moléculas se mueven en todas direcciones debido a la agitación térmica, pero con la particularidad de que están homogéneamente distribuidas (en cada cm3 de aire hay aproximadamente la misma cantidad de moléculas - 25 trillones).





Supongamos que se mueve rápidamente el pistón hacia el interior del tubo. Las moléculas que se encuentran junto al pistón serán empujadas, mientras que las que se encuentran alejadas no. En la zona del pistón el aire se encontrará más comprimido que lejos de él, es decir que la misma cantidad de aire ocupa menos espacio. El aire comprimido tiende a descomprimirse (como cuando abrimos la válvula de un neumático) desplazándose hacia la derecha y comprimiendo el aire próximo. Esta nueva compresión implica nuevamente una tendencia a descomprimirse, por lo que la perturbación original se propaga a lo largo del tubo alejándose de la fuente.
Es importante enfatizar que el aire no se mueve de un lugar a otro junto con el sonido. Hay trasmisión de energía pero no traslado de materia (comparar con el olfato).





Propagación

Características del medio - Para que la onda sonora se propague en un medio este debe ser elástico, tener masa e inercia. El aire posee además algunas características relevantes para la propagación del sonido:
  • La propagación es lineal (en el intervalo de sonidos audibles la aproximación es válida). Esto permite que diferentes ondas sonoras se propaguen por el mismo espacio al mismo tiempo sin afectarse.





  • El medio es no dispersivo. Por esta razón las ondas se propagan a la misma velocidad independientemente de su frecuencia o amplitud.
  • El medio es homogéneo. No existen direcciones de propagación privilegiadas por lo que el sonido se propaga esféricamente (en todas direcciones).

Ondas de sonido

Las ondas mecánicas son las que se propagan a través de un material (sólido, líquido, gaseoso). La velocidad de propagación depende de las propiedades elásticas e inerciales del medio. Hay dos tipos básicos de ondas mecánicas: transversales y longitudinales.
En las ondas longitudinales el desplazamiento de las partículas es paralelo a la dirección de propagación, mientras que en las ondas transversales es perpendicular.
Las ondas sonoras son longitudinales. En muchos instrumentos (como en la vibración de una cuerda) podemos identificar ondas transversales (así como en la membrana basilar dentro de la cóclea, en el oído interno).














EFECTO DOPPLER


El efecto Doppler es el fenómeno por el cual la frecuencia de las ondas percibida por un observador varía cuando el foco emisor o el propio observador se desplazan uno respecto al otro. En este apartado vamos a estudiar:






Descripción

Este fenómeno fue observado por primera vez en las ondas sonoras por el físico austriaco Christian Andreas Doppler (1803 - 1853), en el año 1842, al notar como el tono (frecuencia) del silbido de una locomotora se hacía más agudo al acercarse y más grave cuando se alejaba.
Posteriormente, en 1848, el físico francés Armand Hippolyte Louis Fizeau (1819 - 1896) descubrió, de manera independiente a C. A. Doppler, un fenómeno análogo en las ondas electromagnéticas (luz), de ahí que al efecto Doppler también se le conozca como efecto Doppler-Fizeau.
El efecto Doppler es el cambio en la frecuencia percibida de cualquier movimiento ondulatorio cuando el emisor, o foco de ondas, y el receptor, u observador, se desplazan uno respecto a otro.






Efecto Doppler
La ambulancia de la imagen se desplaza de izquierda a derecha. Cuando se acerca a la chica de la figura que lleva un maletín, en la derecha de la imagen, la onda "se comprime", es decir, la longitud de onda es corta, la frecuencia alta y, por tanto, el tono del sonido percibido será agudo. Por otro lado, cuando la ambulancia se aleja, a la izquierda de la imagen, la onda "se descomprime", es decir, la longitud de onda es larga, la frecuencia baja y, por tanto, el tono que percibe la chica que lleva el bolso será grave.
El caso representado en la figura anterior no es el único que puede dar lugar al efecto Doppler. Este se da siempre que encontremos un foco y un observador en movimiento relativo. En el siguiente punto vamos a estudiar el efecto a partir de los distintos casos que pueden darse.











Onda mecánicas
Una onda mecánica es una perturbación de las propiedades mecánicas (posición, velocidad y energía de sus átomos o moléculas) que se propaga a lo largo de un material. Todas las ondas mecánicas requieren:
  1. Alguna fuente que cree la perturbación.
  2. Un medio que reciba la perturbación.
  3. Algún medio físico a través del cual elementos del medio puedan influir uno al otro.
Las ondas mecánicas necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse. Las partículas del medio oscilan alrededor de un punto fijo, por lo que no existe transporte neto de materia a través del medio. Como en el caso de una alfombra o un látigo cuyo extremo se sacude, la alfombra no se desplaza, sin embargo una onda se propaga a través de ella. Dentro de las ondas mecánicas tenemos las ondas elásticas, las ondas sonoras y las ondas de gravedad
Ejemplos de ondas mecanicas:
ondas en una cuerda(de violin, guitarra o cualquiera), de las olas del mar, la vibracion causada al golpear un objeto, de un resorte,del sonido.

Ondas longitudinales
Una onda longitudinal es aquella en la que el movimiento de oscilación de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos que de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto.
La figura ilustra el caso de una onda sonora. Si imaginamos un foco puntual generador del sonido, los frentes de onda (en rojo) se desplazan alejándose del foco, transmitiendo el sonido a través del medio de propagación, por ejemplo aire.
Por otro lado, cada partícula de un frente de onda cualquiera oscila en dirección de la propagación, esto es, inicialmente es empujada en la dirección de propagación por efecto del incremento de presión provocado por el foco, retornando a su posición anterior por efecto de la disminución de presión provocada por su desplazamiento. De este modo, las consecutivas capas de aire (frentes) se van empujando unas a otras transmitiendo el sonido
Cuando se produce una perturbación periódica en el aire, se originan ondas sonoras longitudinales. Por ejemplo, si se golpea un diapasón con un martillo, las ramas vibratoria emiten ondas longitudinales. El oído, que actúa como receptor de estas ondas periódicas, las interpreta como sonido.
El término sonido se usa de dos formas distintas. Los fisiólogos definen el sonido en término de las sensaciones auditivas producidas por perturbaciones longitudinales en el aire. Para ellos, el sonido no existe en un planeta distante. En física, por otra parte, nos referimos a las perturbaciones por sí mismas y no a las sensaciones que producen.




























Onda transversal
Supón que produces una onda en una cuerda agitando el extremo libre hacia arriba y hacia abajo. En este caso el movimiento de la cuerda es perpendicular a la dirección del movimiento de la onda. Cuando el movimiento del medio (en este caso, la cuerda) es perpendicular a la dirección en que se propaga la onda, decimos que se trata de una onda transversal.

Los movimientos de las partículas del medio que transportan la onda son perpendiculares a la dirección de propagación de la perturbación; en las segundas, los movimientos. 
    Un modelo simple de onda longitudinal se obtiene a partir de una hilera de pequeños bloques unidos.





Ejemplos de onda transversales incluyen ondas sísmicas secundarias, el movimiento de los campos eléctricos (E) y magnéticos (V) en una onda plana electromagnética, donde ambos oscilan perpendicularmente entre sí, así como en dirección de la transferencia de energía. Por lo tanto, una onda electromagnética consta de dos ondas transversales, la luz visible es un ejemplo de onda electromagnética. Véase Espectro electromagnético para información de distintos tipos de onda electromagnética.








Magnitudes y unidades S.I. que definen una onda son:
Elongación (y): 
Distancia de cada partícula vibrante a su posición de equilibrio (m).Amplitud (A): Distancia máxima de una partícula a su posición de equilibrio o elongación máxima (m).
Ciclo u oscilación: Recorrido de cada partícula desde que inicia una vibración hasta que vuelve a la posición inicial (m).
Longitud de onda (
l): Distancia mínima entre dos partículas que vibran en fase, es decir, que tienen la misma elongación en todo momento (m).
Número de onda (n): Número de longitudes de onda que hay en la unidad de longitud (1/m). 
l= 1/n.
Velocidad de propagación (v): Velocidad con la que se propaga la onda. Espacio recorrido por la onda en la unidad de tiempo (m/s).
Periodo (T): 1) Tiempo en el que una partícula realiza una vibración completa. 2) Tiempo que tarda una onda en recorrer el espacio que hay entre dos partículas que vibran en fase (s). T=1/f.
Frecuencia
 (f): 1) Nº oscilaciones de las partículas vibrantes por segundo. 2) Nº oscilaciones que se producen en el tiempo en el que la onda avanza una distancia igual a 
l (Hz=ciclos/s). f=1/T.
La relación entre v, 
l, f y T es: = v · T = v/f.

Pulso y tren de ondas


El movimiento de cualquier objeto material puede ser considerado como una fuente de ondas. Al moverse perturba el medio que lo rodea y esta perturbación al propagarse puede ser un pulso o un tren de ondas. Un impulso único como una vibración en el extremo de una cuerda, al propagarse da lugar a un tipo de onda llamada pulso.
Si las vibraciones del extremo se suceden, se formará un tren de ondas que se transmite a lo largo de la cuerda. Por ejemplo: Una serie continua e ininterrumpida de sacudidas que se propagan a lo largo de una cuerda o de un resorte, un sonido monótono y permanente, etcétera.















PROCESO DIATERMICO

·         Un proceso diatérmico quiere decir que deja pasar el calor fácilmente.
·         Una interacción térmica es cualquier otro tipo de intercambio de energía. En este caso la pared se denomina diatérmica.
·         Diatérmico también puede entenderse por isotérmico , significa que no hay cambio de temperatura debido a una pared diatérmica que aísla el sistema del medio ambiente
·         En cuanto diatérmicos se refieren a que el sistema tiene un intercambio de energía con los alrededores, un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energía con nuestro ambiente
·         Una pared diatérmica es aquella que permite la transferencia de energía térmica (calor) pero, sin que haya transferencia de masa. El opuesto es una pared adiabática que es la que impide la transferencia de energía en forma de calor. 
·         Cualquier superficie real es una superficie diatérmica, por ejemplo, un vaso, los    muros de una casa, etc., todos en mayor o menor grado permiten la transferencia de calor.


Se refieren a que el sistema tiene un intercambio de energía con los alrededores, un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energíaOtra definición:
En proceso diatérmico es aquél en el que se intercambia calor sin intercambiar masa.

EJEMPLOS: 
  • El enfriamiento del té o el café en la taza es un proceso diatérmico. 
  • El calentamiento de los alimentos cuando los cocinamos. 
  • El frío que hace en casa en invierno Por estar frío fuera 
  • El calor que hace con la calefacción prendida por estar caliente el agua que circula por el radiador. 
  • La refrigeración de un chip a través del disipador de calor
  • La fusión de los cubitos de hielo a temperatura ambiente 
  • El calentamiento de alimentos en una cazuela 
  • El enfriamiento de los alimentos 
  • La subida de temperatura de un termómetro 
  • El enfriamiento de una bañera.
 con nuestro ambiente.

La manera usual de definirlo es que un límite es diatérmico cuando permite el flujo de calor a través de él.

Un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energía con nuestro ambiente. Diatérmico también puede entenderse por isotérmico , significa que no hay cambio de temperatura debido a una pared diatérmica que aísla el sistema del medio ambiente, tener bien en cuenta las definiciones de sistema , medio ambiente y universo. La manera usual de definirlo es que un límite es diatérmico cuando permite el flujo de calor a través de él. De nuevo, preferimos evitar esta segunda definición debido a la dificultad de definir calor.

VISITAR ÉSTE LINK PATA MEJOR COMPRENSIÓN DE LO QUE ES UN PROCESO DIATÉRMICO.
https://www.youtube.com/watch?v=rS8nwKdHoOk



 Proceso Adiabático
En termodinámica se designa como proceso adiabático a aquel en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia color con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene  lugar la máxima transferencia  de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico. El término adiabático hace referencia a elementos que implican la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático. Otro ejemplo es la temperatura adiabática de llama, que es la temperatura que podría alcanzar una llama si no hay transferencia de calor, a pesar que se consiga variar la temperatura del aire y su humedad relativa. El calentamiento y el enfriamiento adiabático son procesos que comúnmente ocurren  debido en la presión de un gas. Esto puede ser cuantificado usando la ley de los gases ideales.




  • Proceso Adiabático: Proceso en el que no se transmite calor, el sistema se aísla para no recibir o enviar calor al ambiente.
  • Proceso Adiabático Irreversible: Proceso adiabático que es irreversible, pero el sistema pierde energía en forma de trabajo.
  • Proceso de estrangulamiento: Proceso adiabático que es irreversible, sin que el sistema pierda energía en forma de trabajo.
  • Proceso Isentrópico: Proceso adiabático que es reversible.


VISITAR ÉSTE LINK PARA MEJOR COMPRENSIÓN DE LO QUE ES UN PROCESO ADIABÁTICO.
https://www.youtube.com/watch?v=5KLDSLGCSWY















3.- PROCESO ISOCÓRICO


Proceso isocórico

Un proceso isocórico o isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; 

ΔV = 0. Esto implica que el proceso no realiza trabajo ni sobre el sistema ni de los alrededores, por lo que se cumple que Tr=0 y ΔE=Q .

Un ejemplo de este proceso se presenta al cocer alimentos dentro de una olla exprés, la cual disminuye el tiempo de cocción, pues sirve como deposito para que la temperatura y presión aumentan en el interior conforme transcurre el tiempo, manteniendo su volumen constante. En general, se presenta cuando un gas se calienta dentro de un recipiente de volumen fijo.




El caso de calentar dos masas iguales de gas, una a presión constante y otra a volumen constante, para que logren el mismo incremento de temperatura se requiere proporcionar mayor calor al sistema a presión constante (Qp > Qv). Ello se debe a que el proceso isobárico el calor suministrado se usa para aumentar la energía interna y efectúa trabajo, mientras que en el proceso isocórico todo el calor se usa para incrementar exclusivamente la energía interna. 









Un proceso isocórico, también llamado proceso isométrico o isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; ΔV = 0. Esto implica que el proceso no realiza trabajo presión-volumen, ya que éste se define como:
ΔW = PΔV,
donde P es la presión (el trabajo es positivo, ya que es ejercido por el sistema).
Aplicando la 
primera ley de la termodinámica, podemos deducir que Q, el cambio de la energía interna del sistema es:
Q = ΔU





Para un proceso isocórico: es decir, todo el calor que transfiramos al sistema quedará a su energía interna, U. Si la cantidad de gas permanece constante, entonces el incremento de energía será proporcional al incremento de temperatura,

Q = nCVΔT


donde CV es el calor específico molar a volumen constante.

En un diagrama P-V, un proceso isocórico aparece como una línea vertical. Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de la interacción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre si.




De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debidos a la desestabilización del sistema.




























TERMODINÁMICA

La termodinámica es la parte de la física que se encarga de la relación entre el calor y el trabajo. En este apartado estudiaremos:


Relación entre trabajo y calor

Tanto el calor como el trabajo son modos en que los cuerpos y los sistemas transforman su energía. Esto permite establecer un equivalente mecánico del calor. Observa los siguientes ejemplos:
  • De trabajo mecánico a calor: Frota dos bloques de hielo, y comprobarás que se derriten, aún cuando estés en una camara frigorífica a una temperatura menor de 0 ºC
  • De calor a trabajo mecánico: En una máquina de vapor,la expansión del vapor de agua que se calienta produce el desplazamiento del pistón


Trabajo y calor son métodos de transferencia de energía. Utilizan la misma unidad de medida en el Sistema Internacional, el julio ( J ). Además, es habitual utilizar la caloría ( cal ) para medir el calor. La conversión entre calorías y julios viene dada por:
cal = 4.184 ⇔ J = 0.24 cal






Esta relación entre trabajo y calor, que hoy vemos de manera clara, no lo fue hasta el S. XIX. El estudio del trabajo y del calor eran disciplinas separadas: la mecánica y la termología respectivamente. Así también las unidades en que se medían cada uno, julio y caloría. A mediados del S. XIX el científico inglés James Prescott Joule diseñó un dispositivo capaz de medir el equivalente mecánico del calor, estableciendo, así, la equivalencia señalada.




La termodinámica es la parte de la física que estudia las transferencias de calor, la conversión de la energía y la capacidad de los sistemas para producir trabajo. Las leyes de la termodinámica explican los comportamientos globales de los sistemas macroscópicos en situaciones de equilibrio.



Tiene las siguientes características:
  • Se aplica al estudio de sistemas que contienen muchas partículas y no al estudio de moléculas, átomos o partículas subatómicas
  • Estudia el sistema en situaciones de equilibrio, que son aquellas a las que sistema tiende a evolucionar y caracterizadas porque en ellas todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas
  • Sus postulados son indemostrables, están basados en las experiencias y no en razonamientos teóricos
Es importante que te familiarices con los conceptos que vamos a introducir a continuación, pues, aunque en una primera aproximación pueden parecer algo abstractos, te permitirían estudiar el comportamiento de sistemas concretos ( un motor, un inflador de aire, etc ) con bastante precisión.

Sistema

El sistema es la parte del universo que vamos a estudiar. Por ejemplo, un gas, nuestro cuerpo o la atmósfera son ejemplos de sistemas que podemos estudiar desde el punto de vista termodinámica.

Entorno o ambiente

Todo aquello que no es sistema y que se sitúa alrededor de él, se denomina ambiente o entorno. Los sistemas interaccionan con el entorno transfiriendo masa, energía o las dos cosas. En función de ello los sistemas se clasifican en:

TipoIntercambiaEjemplo
AbiertoMasa y energía (trabajo o calor)Reacción química en tubo de ensayo abierto
CerradoSólo energíaRadiador de calefacción
AisladoNi materia ni energíaTermo para mantener bebidas a temperatura constante
AdiabáticoNi materia ni calor, pero si energía en forma de trabajoTermo con tapa que permita variar volumen


PROCESOS TERMODINÁMICOS

1.- PROCESO ISOTÉRMICO


Proceso Isotérmico
Recordemos que en un proceso isotérmico, la temperatura se mantiene constante.
 

La energía interna depende de la temperatura. Por lo tanto, si un gas ideal es sometido a  un proceso isotérmico, lavariación de energía interna es igual a cero.
 
Por lo tanto, la expresión de la  1ª Ley de la Termodinámica  



se convierte en: q = - w


De tal manera que en un proceso isotérmico el calor entregado al sistema es igual al trabajo realizado por el sistema hacia los alrededores.
        
Gráficamente el w se puede hallar calculando el área bajo la curva del diagrama P-V.





2.- PROCESO ISOBÁRICO



Proceso Isobárico
Recordemos que en un proceso isobárico, la presión permanece constante.
La mayoría de los cambios físicos y químicos ocurren a presión constante.
Por ejemplo, una reacción química, que se realiza en un sistema abierto, la presión es la presión atmosférica y ésta no varía durante el proceso.
Como hemos visto a presión constante:





El calor involucrado en el proceso a P = cte. se denota como qP.

Aplicando la primera ley:



reordenando la expresión, podemos llegar a:


qP = (E2 + PV2) – (E1 + PV1)




Los químicos denominan Entalpía (H) al calor de un sistema  a presión constante,
            
Siendo la Entalpía:
  •      Propiedad extensiva y
  •      Función de estado.

Entonces, en un proceso isobárico la expresión de la Primera Ley de la Termodinámica.



se puede expresar también como:



El proceso isobárico, en un diagrama PV: